Discussion. Salts of the $A_{2} \mathrm{PtF}_{6}$ type have been made only with Group I elements; all have the $\mathrm{K}_{2} \mathrm{GeF}_{6}$ structure (Wyckoff, 1965). We have found that $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}$ has the $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ (antifluorite) structure, in which the K^{+}and PtCl_{6}^{2-} ions occupy the F^{-}and Ca^{2+} sites of the fluorite structure respectively.

There is no distortion from full $m 3 m$ symmetry allowed for the PtF_{6}^{2-} ion in space group $\mathrm{Fm} 3 m$, and refinement in lower-symmetry space groups did not lead to any significant departure from this geometry. Other $M \mathrm{~F}_{6}^{n-}$ anions commonly show a departure from $m 3 m$ symmetry by a compression along a threefold axis (Clark \& Russell, 1978). The $\mathrm{Pt}-\mathrm{F}$ distance is 1.942 (8) $\AA[1.936$ (4) \AA in $R \overline{3}]$. The H atoms were not located.

We thank the SRC for financial support.

References

Alcock, N. W. (1969). Acta Cryst. A25, 518-520.
Clark, G. R. \& Russell, D. R. (1978). Acta Cryst. B34, 894-895.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Peacock, R. D. (1960). Prog. Inorg. Chem. 2, 193-249.
Sheldrick, G. M. (1976). SHELX. Program for crystal structure determination. Univ. of Cambridge, England.
Wyckoff, R. G. (1965). Crystal Structures, 2nd ed. Vol. 3. New York: Interscience.

Acta Cryst. (1980). B36, 1922-1923

Structure of Bismuth Indium Sulphide $\mathrm{Bi}_{\mathbf{3}} \mathbf{I n}_{\mathbf{5}} \mathbf{S}_{\mathbf{1 2}}{ }^{*}$

By Volker Krämer
Kristallographisches Institut der Universität, Hebelstrasse 25, D-7800 Freiburg, Federal Republic of Germany

(Received 10 March 1980; accepted 1 April 1980)

Abstract

Bi}_{3} \mathrm{In}_{5} \mathrm{~S}_{12}\), monoclinic, $C 2 / m, a=33 \cdot 13$ (1), $b=3.873$ (1), $c=14.413$ (2) $\AA, \beta=91.21(2)^{\circ}, V=$ $1849.0 \AA^{3}, Z=4, D_{c}=5.73 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} \mathrm{Kat})=$ $0.71069 \AA, \mu=345.8 \mathrm{~mm}^{-1}, F(000)=2744$; reflection condition $h k l: h+k=2 n$; final $R=0.067$. The structure is built up by irregular $\operatorname{In}-S$ octahedra and distorted mono- and bicapped trigonal prisms of $\mathrm{Bi}-\mathrm{S}$, forming chains along y.

Introduction. In the system $\operatorname{In}_{2} \mathrm{~S}_{3}-\mathrm{Bi}_{2} \mathrm{~S}_{3}$ three intermediate compounds were found (Krämer, 1976). Two of these have the compositions $\mathrm{In}_{2} \mathrm{Bi}_{4} \mathrm{~S}_{9}$ and $\mathrm{Bi}_{2} \mathrm{In}_{4} \mathrm{~S}_{9}$ (Krämer, 1971; Chapuis, Gnehm \& Krämer, 1972); the composition of the third compound could not be determined chemically with sufficient accuracy. Therefore a structure analysis was performed which shows the correct formula to be $\mathrm{Bi}_{3} \mathrm{In}_{5} \mathrm{~S}_{12}\left(3 \mathrm{Bi}_{2} \mathrm{~S}_{3} .5 \mathrm{In}_{2} \mathrm{~S}_{3}\right)$.

Crystals could be prepared with chlorine as transport agent in a temperature gradient of $953-873 \mathrm{~K}$. By annealing stoichiometric amounts of $\mathrm{Bi}_{2} \mathrm{~S}_{3}$ and $\mathrm{In}_{2} \mathrm{~S}_{3}$ for several weeks at 873 K only $\mathrm{Bi}_{2} \mathrm{In}_{4} \mathrm{~S}_{9}$ and $\mathrm{In}_{2} \mathrm{Bi}_{4} \mathrm{~S}_{9}$ were formed in the corresponding ratio. Therefore chlorine is thought to stabilize the $\mathrm{Bi}_{3} \operatorname{In}_{5} \mathrm{~S}_{12}$ structure and small proportions thereof may be incorporated which cannot be detected by X-ray diffraction.

[^0]As-grown crystals are black and elongated along y, showing the pinacoids $\{100\},\{010\}$ and $\{001\}$. Intensities from a single crystal ($25 \times 900 \times 63 \mu \mathrm{~m}$) were collected on an automatic four-circle diffractometer (Enraf-Nonius CAD-4) with graphite-monochromatized Mo $K a$ radiation and an $\omega-2 \theta$ scan mode. Calculations were performed with the XRAY system (Stewart, Machin, Dickinson, Ammon, Heck \& Flack, 1976). 7370 reflections were measured which reduced to 3092 independent reflections, 2788 of which had $I>$ $3 \sigma(I)$. Intensities were corrected for Lorentzpolarization and absorption effects. The structure was solved from a Patterson map and successive Fourier syntheses. Refinement of positional and anisotropic

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and their e.s.d.'s $(<1$ in last digit for \ln and Bi$)$

	x	$y=0$	z		x	$y=0$
$\operatorname{Bi}(1)$	1353		-124	$\mathrm{~S}(1)$	$-60(2)$	$1789(4)$
$\operatorname{Bi}(2)$	3203		2623	$\mathrm{~S}(2)$	$623(2)$	$4009(4)$
$\operatorname{Bi}(3)$	5516		2083	$\mathrm{~S}(3)$	$1160(2)$	$1817(4)$
			$\mathrm{S}(4)$	$2224(2)$	$2404(4)$	
$\ln (1)$	0	0	$\mathrm{~S}(5)$	$3939(2)$	$1853(4)$	
$\ln (2)$	0	5000	$\mathrm{~S}(6)$	$4665(2)$	$3936(4)$	
$\ln (3)$	2150	4167	$\mathrm{~S}(7)$	$5538(2)$	$266(4)$	
$\ln (4)$	4032	5044	$\mathrm{~S}(8)$	$6616(2)$	$3988(4)$	
$\ln (5)$	6729	2184	$\mathrm{~S}(9)$	$8029(2)$	$1459(4)$	
$\operatorname{In}(6)$	9277	2794	$\mathrm{~S}(10)$	$8731(2)$	$3972(4)$	
			$\mathrm{S}(11)$	$7718(2)$	$4111(4)$	
			$\mathrm{S}(12)$	$6839(2)$	$404(4)$	

Table 2. Interatomic distances (\AA) and their e.s.d.'s

$\mathrm{Bi}(1)-\mathrm{S}(5)$	3.285 (5) $2 \times$	$\operatorname{In}(3)-\mathrm{S}(8)$	2.632 (4) $2 \times$
S(7)	3.379 (6) $2 x$	S(11)	2.702 (5) $2 \times$
S(12)	2.622 (4) $2 \times$	S(4)	2.557 (6)
S(3)	2.883 (6)	S(11)	2.512 (6)
S(9)	2.840 (6)	$\operatorname{In}(4)-\mathrm{S}(2)$	2.619 (4) $2 \times$
$\mathrm{Bi}(2)-\mathrm{S}(9)$	$2 \cdot 619$ (4) $2 \times$	S(10)	2.658 (4) $2 \times$
S(10)	$3 \cdot 232$ (5) $2 x$	S(6)	2.664 (6)
S(11)	3.329 (5) $2 \times$	S(8)	2.584 (6)
S(4)	3.253 (6)	$\operatorname{In}(5)-\mathrm{S}(3)$	2.748 (5) $2 \times$
S(5)	2.700 (7)	S(4)	2.552 (4) $2 \times$
$\mathrm{Bi}(3)-\mathrm{S}(1)$	2.745 (5) $2 \times$	S(8)	2.635 (6)
S(2)	3.397 (5) $2 \times$	S(12)	2.599 (6)
S(3)	2.912 (5) $2 \times$	$\operatorname{In}(6)-\mathrm{S}(5)$	2.604 (4) $2 \times$
S(7)	2.621 (6)	S(6)	2.833 (5) $2 \times$
$\operatorname{In}(1)-\mathrm{S}(1)$	2.590 (6) $2 \times$	S(1)	2.657 (7)
S(7)	2.654 (5) $4 \times$	S(10)	2.508 (6)

thermal parameters resulted in a final $R=0.067^{*}$ and an average shift/error of 1.5×10^{-5}. Scattering factors of neutral atoms (Cromer \& Mann, 1968) were used and corrected for anomalous dispersion. The atomic coordinates are listed in Table 1, bond lengths in Table 2.

Discussion. A view of the complete structure is displayed in Fig. 1. All atoms are located on the mirror planes at $y=0$ and $\frac{1}{2}$. $\operatorname{In}(1,2)$ occupy special positions at the centres of inversion at 000 and $00 \frac{1}{2}$, all others being in general positions. $\operatorname{In}(1-6)$ are surrounded by six S (distorted octahedra), whereas $\mathrm{Bi}(1,2)$ are eightfold (distorted bicapped trigonal prisms), and

[^1]

Fig. 1. Structure of $\mathrm{Bi}_{3} \mathrm{In}_{5} \mathrm{~S}_{12}$ viewed along b; rings are at $y=\frac{1}{2}$, double rings at $y=0$ (small: In , medium: Bi , large: S).
$\mathrm{Bi}(3)$ is sevenfold (distorted monocapped trigonal prism) coordinated. The $\mathrm{In}-\mathrm{S}$ distances range from 2.51 to $2.83 \AA$, the $\mathrm{Bi}-\mathrm{S}$ from 2.62 to $3.40 \AA$. The $\mathrm{In}-\mathrm{S}$ octahedra are edge-shared, and the $\mathrm{Bi}-\mathrm{S}$ prisms are stacked along y, all forming chains parallel to \mathbf{b}. There is only a faint resemblance to $\mathrm{Bi}_{2} \mathrm{In}_{4} \mathrm{~S}_{9}$ (Chapuis, Gnehm \& Krämer, 1972) where partially sixfold coordinated Bi and fivefold coordinated In were found which do not show up in the structure presented here.

The author thanks Dr E. Keller, Chemisches Laboratorium der Universität Freiburg, for the intensity collection and the Deutsche Forschungsgemeinschaft for financial support.

References

Chapuis, G., Gnehm, Ch. \& Krämer, V. (1972). Acta Cryst. B28, 3128-3130.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Кrämer, V. (1971). Z. Naturforsch. Teil B, 26, 1074.
Krämer, V. (1976). Thermochim. Acta, 15, 205-212.
Stewart, J. M., Machin, P. A., Dickinson, C., Ammon, H. L., Heck, H. \& Flack, H. (1976). The Xray 76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1980). B36, 1923-1925

Antimony(III) Arsenic(V) Oxide

By Peter G. Jones, George M. Sheldrick and Einhard Schwarzmann
 Anorganisch-Chemisches Institut der Universität Göttingen, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany

(Received 14 March 1980; accepted 1 April 1980)

Abstract

AsSbO ${ }_{4}, M_{r}=260 \cdot 67$, monoclinic, $P 2_{1} / m$, $a=4.794$ (2), $b=6.925$ (2), $c=5.307$ (2) $\AA, \beta=$ $93.55(2)^{\circ}, U=175.9 \AA^{3}, Z=2, D_{x}=4.923 \mathrm{Mg} \mathrm{m}^{-3}$, $\mu=17 \cdot 1 \mathrm{~mm}^{-1}$ (Mo $K \alpha$). $R=5 \cdot 6 \%$ for 500 unique

observed reflexions. As, Sb and two O atoms lie on special positions $x, \frac{1}{4}, z$; a further O lies on a general position. The extended structure consists of infinite layers, with As tetrahedrally coordinated by O , and Sb

[^0]: * Dedicated to Professor Dr Werner Borchert on the occasion of his 70th birthday.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35249 (25 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

